

Web controlled Smart Drainage
and Sub Irrigation Control System

Design Document

Team Dec1602

Team Leader: Anne Ore
Webmaster: Griffen Clark
Key Concept Holder: Michael Parker
Key Concept Holder: Adam Wolter
Communications Liaison: Rodney Barto
Client: Agri Drain
Advisor: Nicola Bowler

Dec1602@iastate.edu

Dec1602.sd.ece.iastate.edu

Revised: 3/2/2016 - Version 1.0

 1

Table of Contents

1 Introduction ……………………………………………………………………………… 2
1.1 Project Statement ………………………………………………………………..………... 2
1.2 Purpose ………………………………………………………………………………..……. 2
1.3 Goals ………………………………………………………………………….……….…….. 2

2 Deliverables …………………………………………………………..…………………. 3

3 Design …………………………………………………………………….………………… 3
3.1 System Specifications ………………………………………………………….………… 3
3.1.1 Non-functional Requirements ………………………………….…………………...… 3
3.1.2 Functional Requirements …………………………………….…………………...…… 3
3.2 Proposed Design/Method ……..…………………………….…………….……………… 4
3.3 Design Analysis ……..……………………………………..………………….…………… 4

4 Testing ………………………………………………...………………………….………… 5
4.1 Tools and Software ……………………………….……………………………..………… 5
4.2 Testing Process .………………………………..……………………………………..…… 5

5 Results ……………………………………..……………………………………………..… 6

6 Conclusions …………………………..……………………………………………….… 6

7 Appendices ……………………………...……………………………………………..… 7
7.1 Resources …………….…………………………………………………………..………… 7
7.2 Figures ………………………………...…………………………………………..………… 7

 2

1 Introduction

1.1 Project Statement
The Agri Drain Web Controlled Smart Drainage and Sub Irrigation Control System is simply a
M2M (machine to machine) control system for water management structures. What this means
is that a user will have the ability to control and monitor control structures in the field from a
variety of devices, such as a smartphone, personal computer, or tablet. The end product will be
a web application that fits into Agri Drain’s website and is integrated with their current database.
The web application will be able to report flow rates, water levels, and rainfall totals collected by
the structures in the field. It will also be able to provide to the user an easy to use control that
manages the flow rate of each structure while also being able to set up schedules of certain
drainage rates.

1.2 Purpose
Agri Drain, the leader in industry for manufacturing these water control structures, wants to
provide this easy to use functionality to farmers. This would allow farmers to increase crop
yields while also conserving water and soil. The end product will be able to provide data, such
as flow rates, water levels, nutrient levels, rainfall totals, and other data in a graphical, easy to
read, format. End users will also have the ability to export this data to a spreadsheet file.

1.3 Goals
The obvious goal our team wishes to accomplish with this project is to have a fully functional
web application that provides the user with the ability to monitor and control elements of the
water control structure remotely. This web application needs to have the functionality of being
able to use Agri Drain’s existing user database and be able to be placed on Agri Drain’s server
along with their existing web site. Our team aims to provide an intuitive and beneficial tool to
farmers that could not only be used as a cost and time saving device but also an effective way
to reduce harm done to valuable soil and the environment due to over irrigation or nutrient
runoff.

 3

2 Deliverables
The main deliverable for this project is the working web application and source code for this
project. Other large deliverables include a fully configured database integrated into the web
application, and a comprehensive test suite that covers most of the functionality and serves as
documentation for the source code. However, other deliverables will include the intellectual
content within our product. This could include our development environment, development
process, as well as how the various objects or components of the product connect. These
components can be found in the block diagram of Figure 3 in Appendix 7.2.

3 Design
Our client specifically desires that the product be in the form of a web application that is able be
placed alongside the client’s existing website and follow that site’s existing theme. The design of
the web application is going to have many iterations based on input from the client as well as
potential end users; however, the beginning design will be heavily based off of the example
dashboard provided by the client, as seen in Figure 1 in Appendix 7.2.

3.1 System Specifications
We have not received any specific system specifications from our client as of yet. We plan on
developing a codebase that is cross-platform, so it can function on any system that the client
provides for us.

3.1.1 Non-functional Requirements

We have not yet received any non-functional requirements from our client. However, our web
application will have to have a reasonable response time both client side navigation as well as
communicating over a cellular network to hardware located in the field. It must also be able to
scale for many users and many hardware units in the field (“many” has yet to be defined). It is
essential that our team takes into account disaster recovery, such as what is going to happen to
the hardware units if communication is lost. The product must also be easy to navigate which
can be enhanced by using large text and contrasting colors.

3.1.2 Functional Requirements

There are many functional requirements of the web application, some of them are listed below.
These functional requirements are highlighted in both Figure 1 and Figure 2 in Appendix 7.2.

 The web application must show locations of hardware units and allow the user to select
individual units from a map in order to see details about that unit.

 The web application must provide alerts to users in multiple ways when an event occurs
that could require attention, such as quickly rising water levels.

 The web application must be able to keep a log of events and data while also being able
to graph and export this data in a variety of ways that are easy to read.

 The web application must provide automation of events to control the hardware units.
 The web application must provide several pieces of data including water and nutrient

levels.

 4

3.2 Proposed Design/Method
For our client-sided code, we plan on using React, which is a JavaScript library that was created
by Facebook, and is currently used in several large-scale websites in production. React allows
us to extract each part of the client sided experience out into individual, reusable components,
where each component has its own defined behavior and markup. Alongside React, we plan on
using SASS to manage our CSS styles. By giving each component its own associated SASS
file, we can leverage this combination of React and SASS to define individual pieces of the
product by specifying a component’s behavior, markup, and styles. Finally, we plan on using
Bootstrap to help do some of the heavy lifting when it comes to responsive design and overall
look-and-feel. There are many popular websites that use Bootstrap, so this will allow our user
interface to look familiar to other websites that our end-users may have used before.

Our server-sided code will use the Express framework. Express is an extremely easy to use and
unopinionated web framework that works with pretty much any configuration that you give it.
Express will give us the ability to create different endpoints for our application, which can be
used by the drainage controller to send information and receive commands from the user. Our
Express code will act as the layer between the user interface and the database / drainage
hardware.

Finally, we plan on using a few different tools to assist us with the development of this project.
Webpack is one of these tools, and it will allow us to bundle all of our client-sided files
(JavaScript, SASS, and HTML) into a single file to be sent to the client. This allows for a drastic
reduction in the amount of data that end users need to receive when loading our application.
Webpack also gives us the ability to create development servers, which can detect any changes
in our code, and automatically re-bundle our code and immediately re-deploy it to the client side.
This is extremely helpful for development purposes.

3.3 Design Analysis
Figure 1 in Appendix 7.2 is a highlight of some of the requirements that the product must have.
It also serves as a very beneficial guide for our team to meet our client’s desires. Our team
plans to use this to ensure we cover all of the elements our client is looking for but we also plan
to significantly improve on this web dashboard by rearranging items and adjusting the flow of
the dashboard to be better suited to how people naturally approach applications. Doing this will
provide a better user experience and ease of use. Also, as previously mentioned in the
introduction to the Design section, the design of the product will be revised several times based
on feedback from potential end users.

 5

4 Testing

4.1 Tools and Software
There are a few different JavaScript libraries that we can leverage to help ensure that our
application is adequately tested.

 Mocha will allow us to write unit tests for each of our components to make sure they
behave properly on their own. Mocha allows for human-readable test files, which helps
improve the simplicity of the codebase.

 Chai will allow us to define assertions in each of our tests to make sure that each
component does what it is supposed to do. Chai provides developers with the ability to
chain expectations together to form human-readable sentences. This makes it extremely
easy for newcomers to get familiar with the codebase quicker.

 Sinon is a framework that we can leverage to help us mock out other components when
writing our unit tests, so we can fake . It also allows us to create “spies”, which we can
use to determine that certain functions were called with specific arguments during the
execution of our tests.

 Cucumber is a testing framework that allows us to write acceptance tests. These tests
will exist in separate test files that use the Gherkin syntax, which is a business-friendly
human readable syntax that looks almost identical to the English language. This will
allow for our client to write acceptance test files that we would provide the code
implementations for.

4.2 Testing Process
For the development of this project, our team will be following the methodology of Test Driven
Development. This means that we will write our unit tests first, provide the implementation
second, and perform any necessary refactoring once we have successfully passed the test. This
way, we can write tests based on our given requirements, and only write the code that is
absolutely necessary to fulfill those requirements. This will lead to a cleaner codebase with less
technical debt to worry about later.

 6

5 Results
So far, our team does not have any results to reflect on. We are still in the planning stages of
development which is a very important stage of software development. Developing software
without the proper planning significantly increases technical debt which is why our team is
thoroughly planning specific details of the project. This will help reduce unmaintainable code
and bugs as well as enable easier evolution and maintenance.

6 Conclusions
Summarize the work you have done so far. Briefly re-iterate your goals. Then, re-iterate the best
plan of action (or solution) to achieving your goals and indicate why this surpasses all other
possible solutions tested.

In conclusion, we believe that the approach outlined in this document is the best approach that
we can take to accomplish our overall goal of creating an interactive web dashboard for
remotely controlling and monitoring irrigation/drainage hardware. We believe that our plan will
be successful because each team member is experienced with the JavaScript programming
language as it pertains to web development. The decision to use JavaScript will greatly improve
the quality of our codebase because it will allow us to write our client-sided and server-sided
code using the same language. JavaScript also gives us access to tons of different libraries,
frameworks, and tools, which we can use to our advantage. All of this will help us speed up the
development process and produce quality code. In addition, the continuous feedback that we
will be receiving from the client and end users will enable us to provide an easy to use web
application that benefits the farmers and the environment as a whole.

 7

7 Appendices

7.1 Resources

Below is a list of all of the technologies our team plans on using:
 Node.JS https://nodejs.org/en/
 Express http://expressjs.com/
 React https://facebook.github.io/react/
 Bootstrap http://getbootstrap.com/
 SASS http://sass-lang.com/
 Mocha https://mochajs.org/
 Cucumber https://github.com/cucumber/cucumber-js
 Sinon http://sinonjs.org/
 Chai http://chaijs.com/
 Webpack https://webpack.github.io/
 Gulp http://gulpjs.com/
 MongoDB https://www.mongodb.org/

7.2 Figures

Figure 1 - Example web dashboard provided by Agri Drain

https://nodejs.org/en/
http://expressjs.com/
https://facebook.github.io/react/
http://getbootstrap.com/
http://sass-lang.com/
https://mochajs.org/
https://github.com/cucumber/cucumber-js
http://sinonjs.org/
http://chaijs.com/
https://webpack.github.io/
http://gulpjs.com/
https://www.mongodb.org/

 8

Figure 2 - Example data and control requirements provided by Agri Drain

Figure 3 - Block diagram

