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Project Plan
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Problem Statement

Farmers want to remotely:

● Control crop irrigation/drainage

● Observe water flow rates, communication issues, etc.

● See the water irrigation data represented graphically

● Visually see the location of their devices

● Be notified via text and/or email of device alarm

How do we do this efficiently?
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Solution

● ABE capstone group: hardware implementation

● Our team (DEC1602): web interface to connect farmer and device
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Client mockup (conceptual sketch)
5



Functional Requirements (User)

● The product shall...

○ Allow users to remotely read and update drainage controller settings

○ Present the user with the current device sensor data

○ Graphically present the user with historical device sensor data

○ Present the user with an interactive map that shows physical locations of their devices

○ Alert users (via text/email) when an alarm is triggered
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Functional Requirements (Administrator)

● The product shall...

○ Allow administrators to add new users to the system as well as edit user information

○ Let administrators add new devices with initial configurations 

○ Present administrators with all devices, and their information, within the system

○ Allow administrators to modify settings of any device within the system
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● The product shall

○ Be functional and visually appealing on both web browsers and mobile devices

○ Have a user intuitive interface 

○ Elicit useful documentation for future developers

■ Fit Criteria: Another team shall be able to pick up where our team left off with minimal 

communication with our team

Non-functional Requirements
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Risks & Mitigation 

● Development time constraints

● No funding from client

● Communication hardware yet to be determined by client

● User requirements inaccurately defined initially
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Costs

● Initially considered using paid services like Coveralls, Jira, and Travis CI

○ Decided to reject these services

○ Used free services instead (Instanbul.js, CircleCI)

● Deployment Cost Discussion with Client

○ Amazon Web Services
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System Design
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Front End Screen Flow
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Detailed Design

● Functional Modules Design
○ Separate JavaScript modules for specific functions

○ Necessary for readability and maintenance

● Use React paradigm of creating small components

● User interface design based somewhat on Agri Drain examples
○ We believed it could be improved
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Technologies Used
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Node.js
● Server-side JavaScript runtime environment
● Open source and cross platform
● Event-driven, runs on single async event loop
● Highly scalable
● Used by several companies in the software industry

○ Microsoft
○ Facebook
○ eBay / Paypal
○ Netflix
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React

● Library for creating user interfaces
● Emphasizes modular and component-based design
● Open source, written and maintained by Facebook
● Extremely popular and used by several companies

○ Facebook
○ AirBnB
○ Netflix
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Mocha / Chai

● Testing framework and assertions library
● Behavior Driven Development (BDD)
● Tests are easy to read and write
● Allows us to test server-side hapi code and

React components
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Other Technologies

● Semantic UI
● SASS
● Sinon
● Webpack
● DynamoDB
● Swagger API
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Testing Plan
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Unit Testing

● As mentioned, we used Mocha/Chai for testing

○ Each component is tested

● We used Istanbul.js to show test coverage

○ Allows us to see statement/branch/function coverage

○ Shows exactly what is and what isn’t tested
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Mocha/Chai Test Report
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Istanbul.js
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Continuous Integration

● Used Circle CI to build on every push

○ Run tests 

○ Run linting tools

○ Ensure all committed code is verified
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Demo
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