
Agri Drain
Smart Irrigation Controller

Group DEC1602
Anne Ore, Griffen Clark, Rodney Barto, 
Michael Parker, Adam Wolter
Client: Agri Drain
Adviser: Nicola Bowler

1



Project Plan

2



Problem Statement

Farmers want to remotely:

● Control crop irrigation/drainage

● Observe water flow rates, communication issues, etc.

● See the water irrigation data represented graphically

● Visually see the location of their devices

● Be notified via text and/or email of device alarm

How do we do this efficiently?
3



Solution

● ABE capstone group: hardware implementation

● Our team (DEC1602): web interface to connect farmer and device

4



Client mockup (conceptual sketch)
5



Functional Requirements (User)

● The product shall...

○ Allow users to remotely read and update drainage controller settings

○ Present the user with the current device sensor data

○ Graphically present the user with historical device sensor data

○ Present the user with an interactive map that shows physical locations of their devices

○ Alert users (via text/email) when an alarm is triggered

6



Functional Requirements (Administrator)

● The product shall...

○ Allow administrators to add new users to the system as well as edit user information

○ Let administrators add new devices with initial configurations 

○ Present administrators with all devices, and their information, within the system

○ Allow administrators to modify settings of any device within the system

7



● The product shall

○ Be functional and visually appealing on both web browsers and mobile devices

○ Have a user intuitive interface 

○ Elicit useful documentation for future developers

■ Fit Criteria: Another team shall be able to pick up where our team left off with minimal 

communication with our team

Non-functional Requirements

8



Risks & Mitigation 

● Development time constraints

● No funding from client

● Communication hardware yet to be determined by client

● User requirements inaccurately defined initially

9



Costs

● Initially considered using paid services like Coveralls, Jira, and Travis CI

○ Decided to reject these services

○ Used free services instead (Instanbul.js, CircleCI)

● Deployment Cost Discussion with Client

○ Amazon Web Services

10



System Design

11



Front End Screen Flow

12



Detailed Design

● Functional Modules Design
○ Separate JavaScript modules for specific functions

○ Necessary for readability and maintenance

● Use React paradigm of creating small components

● User interface design based somewhat on Agri Drain examples
○ We believed it could be improved

13



Technologies Used

14



Node.js
● Server-side JavaScript runtime environment
● Open source and cross platform
● Event-driven, runs on single async event loop
● Highly scalable
● Used by several companies in the software industry

○ Microsoft
○ Facebook
○ eBay / Paypal
○ Netflix

15



React

● Library for creating user interfaces
● Emphasizes modular and component-based design
● Open source, written and maintained by Facebook
● Extremely popular and used by several companies

○ Facebook
○ AirBnB
○ Netflix

16



Mocha / Chai

● Testing framework and assertions library
● Behavior Driven Development (BDD)
● Tests are easy to read and write
● Allows us to test server-side hapi code and

React components

17



Other Technologies

● Semantic UI
● SASS
● Sinon
● Webpack
● DynamoDB
● Swagger API

18



Testing Plan

19



Unit Testing

● As mentioned, we used Mocha/Chai for testing

○ Each component is tested

● We used Istanbul.js to show test coverage

○ Allows us to see statement/branch/function coverage

○ Shows exactly what is and what isn’t tested

20



Mocha/Chai Test Report

21



Istanbul.js

22



Continuous Integration

● Used Circle CI to build on every push

○ Run tests 

○ Run linting tools

○ Ensure all committed code is verified

23



Demo

24


